
AD-^ /55t -3// i£f'L

AD

AD-E401 390

TECHNICAL REPORT ARLCD-TR-85025

AN ANALYTICAL MODULARIZED TREATMENT OF AUTOPILOTS
FOR GUIDED PROJECTILE SIMULATIONS

EUGENE M. FRIEDMAN
MICHAEL J. AMORUSO

TECHNICAL
XIBEARY

AUGUST 1985

us ARMY
ARMAMENT'
MUNmONS &
CHEMICAL COMMAND

ARMAMENT R&O CENTER

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER

LARGE CALIBER WEAPON SYSTEMS lABORATORY

DOe. NEW JERSEY

APPROVED FOR PUBUC RELEASE; DISTRIBUTION IS UNLIMTED.

The views, opinions, and/or findings contained in
this report are those of the author(s) and should
not be construed as an official Department of the
Army position, policy, or decision, unless so desig-
nated by other documentation.

Destroy this report when no longer needed. Do
not return to the originator.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

1 REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

Technical Report ARLCD-TR-85025

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

A. TITLE (and Subtitle)

AN ANALYTICAL MODULARIZED TREATMENT OF AUTOPILOTS
FOR GUIDED PROJECTILE SIMULATIONS

5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORf*;

Eugene M. Friedman
Michael J. Amoruso

8. CONTRACT OR GRANT NUMBERfs;

9. PERFORMING ORGANIZATION NAME AND ADDRESS

ARDC, LCWSL
Applied Science Div (SMCAR-LCA)
Dover, NJ 07801-5001

10. PROGRAM ELEMENT, PROJECT, TASK
AREA a WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS
ARDC, TSD
STINFO Div (SMCAR-TSS)
Dover, NJ 07801-5001

12. REPORT DATE

August 1985
13. NUMBER OF PAGES

45
14. MONITORING AGENCY NAME & ADDRESSf//d/«eron» from Controlllne Ottice) IS. SECURITY CLASS, (of thia report)

UNCLASSIFIED

15«. DECLASSIFI CATION/DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT fo/tfils ReporO

Approved for public release; distribution is unlimited.

17. DISTRIBUTION STATEMENT (ot the abstract entered In Block 20, It different from Report)

18. SUPPLEMENTARY NOTES

19. KF' WORDS (Continue on reverse aide it neceaaary and identify by block number)

Simulation Guided munitions
Transfer functions Guided projectiles
Autopilot
Guidance and control

2Qw ABSTRACT CCanttaue oa revermm sfdto W mcevaaiy and Identify by block number)

An innovative technique was developed by which piecewise analytic solutions to
guidance and control transfer functions were obtained for use in larger but
lower frequency computer simulations of guided munitions. Numerical integration,
which is typically used to treat such transfer functions, significantly reduces
the integration time step, and increases computer execution time for the overall
simulation. The modularized analytical approach accommodates integration time

(cont)

DD . '.^JTr. M73 EDITION OF I MOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSfFICATION OF THIS PAGE (When Data Entered)

TTNrT.ARSTFTF.n
SECURITY CLASSIFICATION OF THIS PAGE(H7i«n Datm Entend)

20. ABSTRACT (cont)

steps associated with the lower frequencies of airframe djmamics which results
in faster simulation execution and considerable savings in cost and execution
time.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEfWTion Data Entared)

CONTENTS

Page

1

1

Analysis 2

Introduction

Discussion

First-Order Lag 2
First-Order Lag with Differentiation 4
First-Order Lead/Lag 5
First-Order Lag with Integrator g
Second-Order Lag/Oscillator g

13

14

Results

Conclusions

Appendixes

A Program Listing and Sample Execution I5

B Program Usage 31

Symbols oc

Distribution List og

INTRODUCTION

A substantial need has been demonstrated within Armament Research and
Development Center (ARDC) for a convenient-to-use and computationally efficient
flight simulation for smart munitions. The simulation must be easily adaptable
to varying projectile designs and especially to changes in autopilots which
undergo rapid evolution. During the design cycle of the projectile, a large
number of individual flight simulations must be performed. As an example, during
the development of the Copperhead projectile, the ARDC scientific computers were
overwhelmed by the workload and a substantial amount of the available time on the
BRL CDC 7600 supercomputer was dedicated to the computations. In spite of the
continuous development and improvement in computer systems, flight simulations
will continue to provide a substantial workload which must be accomplished effi-
ciently.

To meet this need, ARDC is formulating methods and writing modular software
for rapidly developing autopilot simulations for guided projectiles and muni-
tions. An innovative technique was developed by which exact analytical solutions
to the required transfer functions are applied in a piecewise manner within a
larger but lower frequency problem which must be solved numerically.

Since the time constants associated with the autopilot components are often
small compared with their driving terms, the integration time step is driven to
very small values to obtain stable numerical integrations which results in very
long computer run times. The use of piecewise analytical solutions to the trans-
fer functions guarantees valid integration of the autopilot transfer functions
regardless of the integration timp step, provided that the driving terms vary
inappreciably over the time step. This is a less stringent requirement than is
needed for stable numerical irtegration since the driving term rates are commen-
surate with the airframe time constants, which are typically large compared to
that of the autopilot.

Five transfer functions were solved in closed form to provide a fast
executing computer code. These particular transfer functions were selected since
an autopilot can generally be represented by a concatenation of these functions
to rate sensors, switches, limiters, and dead zones.

DISCUSSION

Apart from switches, limiters, and dead zones, autopilot transfer functions
are Laplace transform representations of differential equations. Incorporated
into a digital simulation, transfer functions are converted into differential
equations and are usually solved numerically. Sometimes this causes considerably
longer run times than simulation of unguided projectiles.

The time step required to perform the integration is driven by two con-
straints: (1) The driving term or input must not vary appreciably in the time
step. (2) The time step must be sufficiently small to insure a stable

integration. If the time constants associated with the autopilot are small com-
pared to those of the airframe (which is typical), the integration time step will
be driven to very small values and run times will be very long. Since the
driving term is a product of the airframe motion, an inherently slower process,
stable integration is a stronger driver to fine integration than the driving
term's remaining essentially constant during the integration time step. By
analytically solving these transfer functions stepwise with constant driving
terms, the second constraint is eliminated. The size of the integration time
step is limited only by the first constraint. Therefore, the use of closed form,
analytic, stepwise solutions subject only to the first constraint can lead to
larger integration time steps and shorter run times.^

Only five transfer functions are needed to handle the typical autODilot:
the first-order lag, the first-order lag with differentiation, the fir- -order
lead/lag, the first-order lag with integrator, and the second-or.er lag/
oscillator. (Guidance and control systems often contain rate sensors. The
treatment of rate sensors will be published in a separate report.) These
transfer functions are described and solved analytically below; the computer code
Implementing the solutions is shown in appendix A.^

Throughout this development, the driving term is assumed not to vary appre-
ciably during a time step. Care must be taken to adjust the time step downward
as necessary to satisfy this requirement. To take advantage of this technique
for reducing run time, the time step should be increased whenever the driving
terras are varying slowly.

ANALYSIS

First-Order Lag

A first-order lag is represented by the Laplace operator s as

l/(Ts + 1)

In differential equation form

T dy/dt + y = D dj

Michael J. Amoruso and Dennis D. Ladd, "TELUM, A Comprehensive Digital Flight
Simulation of the Copperhead Projectile," Special Publication ARLCD-SP-82003,
U.S. Army Armament Research and Development Command, Dover, NJ, June 1982.

Analytical methods used in this study were derived from John J. D'Azzo and
Constantine H. Houpis, Feedback Control Systems Analysis and Synthesis,
McGraw-Hill, New York, 1960; and Murray R. Spiegel, implied Differential
Equations. Prentice-Hall, Englewood Cliffs, NJ, 1958.

where

y = output or dependent variable

t = time or Independent variable

T = time constant

D = driving term

The general solution to equation 1 is the sura of a particular solution and a
general solution to the homogeneous forra. The homogeneous equation was obtained
by setting D to zero and can be written as

- T dy/y = dt

which can be verified to yield the solution

y = e
-(t - A)/T

(2)

where^A is the integration constant determined from the initial conditions y = y

Jeneou^'lquat^it^'z.''' '"'"'' conditions yields the general solution to the horno-^

y = y^e
-(t - tJ/T

(3)

For a particular solution to equation 1, the expression is verified
tion by substitu-

y = 1 - e
-(t - tJ/T

(4)

Adding equations 3 and 4 gives the complete general solution

y(t) = y^e
-(t - tJ/T

1 - e
-(t - t)/T

(5)

Note that equation 5 has the correct limit of D as T goes to zero.

First-Order Lag with Differentiation

This transfer function has the Laplace operator representation

s/(Ts + 1)

or the time domain form

T dy/dt + y = dD/dt (gj

This representation is not desirable since the driving term appears as a time
derivative that would generally have to be evaluated numerically. However, equa-
tion 6 can be recast as a pair of coupled differential equations that do not
contain any derivatives of the driving term D. An auxiliary variable z is intro-
duced and the equation is replaced by the expressions

dz/dt = y (7)

and

y = (D - z)/T (8)

Differentiating equation 8 and using equation 7 to eliminate dz/dt verifies that
these two equations are equivalent to equation 6. Note that the derivative of D
does not appear. By combining equations 7 and 8, the expression for z(t) is
obtained,

dz/dt + z/T = D/T (9)

and, after integration, the results for z(t) substituted into equation 8. Equa-
tion 9 can be integrated from equation 5 by noting the identity of equations 1
and 9. Therefore,

-(t - t)/T
y(t) = e (D - zJ/T . (10)

where z^ = z at t = t . The auxiliary variable z^ can be eliminated by using
equation 8. ° ^ s

y(t) =

[^-(t - tJ/T]
(D - D^) +

-(t - t)/T

o ■'o (11)

Note that the exponential over T goes to 1/ft - *- ^ K,, TIU -... I I
equation 11 has the cortect ll„lt lo/dt as I'Ls ?' ^J,"- "--'"^'^ -^^ ~ 'h"

First-Order Lead/Lag

This transfer function Is represented by

(T2S + 1)/(TIS +1) T, ,t 0

or

Ti dy/dt + y = To dD/dt + D
(12)

The derivative of the driving term is usually not available in analytic form It
IS eliminated by introducing an auxiliary variable, z, -- -^. .^°™- ^^
equations and a pair of coupled

dz/dt = (D - y)/Tj
(13)

aiul

y = (T2/TJ D + z
(14)

The equivalence with equation 14 can be verified by differentiafnncr ^^ or,H ^K

eliminating dz/dt with equation 13. To obtain t Vressionfrry7t)\:^^^^^
equation 14 as follows

?! dz/dt + z = (l - T2/TJ D
(15)

This is obtained by substituting equation 14 into equation 13, and then substi-
tuting the result for z(t) into equation 14 to obtain y(t). The explicit solu-
tion will not be written. Instead, an algorithm will be provided based on the
observation that equation 15 is equivalent to equation 1 if the following substi-
tutions are made:

■1-1 z -v y (l - T2/TJD ^ D (16) T, > T

Algorithm:

1. Substitute equation 16 into equation 5 to obtain z(t).

2. Save z(t) for use as z^ in the next integration step.

3. Substitute z(t) into equation 14 to obtain y(t).

Note that the lag time constant cannot be zero in equation 16, but a vanish-
ing lead time constant yields the correct limiting case of a simple first-order
lag.

First-Order Lag with Integrator

The representation of this transfer function is

1/s (Ts + 1)

or

T d2y/dt2 + dy/dt = D (17)

Substitution verifies that the following expression is a particular solution to
the nonhomogeneous differential equation 17 since, by assumption, D is constant
during the integration time step:

y = Dt (18)

The homogeneous form of equation 17 can be written as the coupled equations

T dz/dt + z = 0 (19)

and

- = dy/dt (20)

Equation 19 is similar to equation 1 with the substitution of z for y and zero
tor D; therefore, the solution can be obtained from equations 2 and 20

dy/dt = z(t) = e"^'^ - A>/T

or

y(t) = -Te-^^ - ^)/T . B (21)

Mnn71^\^'f "".^"l^"" to equation 17 is the sum of the general homogeneous solu-
tion Uq 21) and the particular nonhomogeneous solution (eq 18)

y(t) = -Te ^^ ^^/^ + Dt + B (22)

dy/dt = e-^^ - A)/^ . . (23)

The integration constants A and B can be determined by invoking the initial
ditions V = v anri Hw/rlf- = ,r' o*- t- _ 4. con-

o
ditions y = y^ and dy/dt = y' at t = t

-(t^ - A)/T

^o = -"^^ -^ '^ '^o "" ^ (24)

-(t, -A)/T
y' = e , + D (25)

The Integration constant A can be eliminated from equation 24 by using equation
^:> to eliminate the exponential term and solving for B

B = Yo + T (y* - D) - Dt^

Taking the natural logarithm of equation 25 yields

A = T In (y' - D) + t
o

The explicit solution is therefore

r -ft - t i/T
y(t) = y^ + T (y' - D) 1 - e °

" L

and

(26)

(27)

D (t - tJ (28)

-(t - t^)/T
dy/dt = (y' - D) e ° + D (29)

Note that equations 28 and 29 go to the correct limits if T goes to zero.

Second-Order Lag/Oscillator

This transfer function can be represented in the form

l/(Is2 + Ds + K) K 7i 0, I * 0

or

1 d2y/dt2 + dy/dt + Ky = T

The homogeneous solution to equation 30 can be verified to be

/'^^ Lt
y(t) = e

(30)

(31)

by substituting into the homogeneous form of equation 30 to obtain the character-
istic equation

IL2 + DL + K = 0 (32)

which has the following roots:

M = ! -D + (D - 4 IK)
V2

/2I (33)

N = f 2 //z'
-D - (D - 4 IK) /2I (34)

The following three cases are treated separately according to whether the radi-
cand IS positive, negative, or zero.

be

Case 1. Positive radicand, damped solution

The homogeneous and nonhomogeneous particular solutions can be verified to

f^\ A Mt „ Nt yjj(t) = Ae + Be (35)

yp(t) = T/K (36)

The complete solution is

y(t) = Ae^*^ + Be^' + T/K (37)

dy/dt = MAe^*^ + NBe^' (38)

The initial conditions y^ = y at t and y' = dy/dt at t„ determine the constants
A and B. o

Mt Nt
y^ = Ae ° + Be ° + T/K (39)

Mt Nt
y' = MAS ° + NBe *

Solving simultaneously gives

(40)

-N t
B = [y^ - y'/M - T/K)e °/ [l - N/M) (41)

-M t
A = (y^ - y'/N - T/K)e °/ [i - M/N)

Case 2. Zero radicand, critically damped

The characteristic equation has only one distinct root

L = -D/2I

(42)

(43)

The homogeneous general solution and nonhomogeneous particular solution can be
verlried to be

yjj (t) = Ae" + Bte^^ (44)

yH(t) - T/K (43J

The complete solution is

y(t) = (A+ Bt) e^*" + T/K (46)

dy/dt = (LA + B + LBt)e^^ (47)

10

Using the Initial conditions y =■ y at t and y'
constant can be determined as follows: °

= dy/dt at t , the integrati on

Lt
y^ = (A + Bt Je ° + T/K (48)

Lt
y' = (LA + B + LBt)e ° (49)

-Lt
B = e ° [y* + L (T/K - y)] (50)

-Lt
A= [(y^- t/K) [1 +L tj - t^y'je ° (51)

Case 3. Negative radicand, oscillation

The roots of the characteristic equation become complex numbers

0) = (K/I) - (D/2I)
V:

(52)

The homogeneous and nonhomogeneous particular solutions are

Lt
yg(t) = Ae sin (ut + ()>) + T/K (53)

yH(t) = T/K (54)

11

where A and <}, are integration constants. The complete solution is

Lt
y = Ae sin (tot + (j)) + T/K (55)

Lt
dy/dt = LAe sin (wt + ()>)+ ojAe cos (ut + 4,) (56)

Using the initial conditions y and y' and solving for A in the
gives . " expression ior y

-L t
A = [y^ - T/K)e °/sin (uit^ + <)>) (57)

where

sin (tot + (})) 9t 0
(58)

If equation 58 fails, A can be obtained from the expression for y'

-L t
A = y'e /[L sin (to t^ + (|)) + 0) cos (tot + (j,)] (59)

or^hLn 1 ^'l"! 52 is always positive definite and the sine and cosine are
^yon^^T.Vi ^ ^^. ^^"^'^^^^ 57 or 59 is always defined. Note that the expres-
sions still contain the phase angle <|,. Solving for ,{, yields the same result
whether equation 57 is substituted into the initial condition on dy/dt or equa-
tion 59 into the initial condition on y. ^

-1
(J) = tan

(y^ - T/K)

[y' - L(y^ - T/K)]
- to t (60)

Fn^Mnn^An* ?"" be eliminated in equation 57 or 59 by substituting equation 60.
Equation 60 shows that equation 58 is equivalent to s 4 ui ou.

y^ - T/K = 0
(61)

12

The imposition in equation 30 of the requirement that parameters K and I not
vanish was aeccssary for the validity of the solutions. For example, equations

,' ; ^"'^.^^ ^^^°"^ singular when K vanishes. Similarly, the roots of the

nlrr UmUaM ''"V'°" ^'^ V"'1n^ " ' '' ^^^° ^^<^^ ''' '^ -^ 52). This i not a limitation since equation 30 reduces to a first-order lag with integrator
when K vanishes and to a simple first-order lag when I vanishes. integrator

However the parameter D in equation 30 may be zero. If D vanishes the
characteristic equation 32 degenerates to vanisnes. the

IL2 + K = 0

M = ± -K/L
V.

= ± i 0)

damninr Onlv \ I ,^rf "^^^^ corresponding to a pure oscillation with no
damping Only case 3 should be considered. Nowhere does D appear in the denomi-
nator of any expression; therefore, the solution remains valid if D is zero

RESULTS

on thl .nT . r^ ^^ 'resulting from this piecewise analytical technique depends
on the speed of execution of Lhe competing numerical method. A sample run is
included in appendix B so that comparisons can be made with other preferred
numerical integration techniques. For comparison, the last case (KTFID=13) was
run analytically with time steps of 0.01 and 0.005 second and run numerically
using Advanced Continuous Simulation Language (ACSL).3 whereas the analytical
method gave the same results for time steps 0.001 and 0.005 second, IcSL cJuld
not operate with a time step of 0.001 second. ACSL was able to obtain nearly

second Th" T"" " """ "''" °' °-°''°^ ^^'^""^ '^"^ f^il-d -fter the third second. These results are compared as follows:

Time
(sec)

Analyt ical Num<
DT=

2rical (ACSL)
DT=0.01 sec

10.00000

DT=0.005 sec

10.00000

=0.00001 sec

0
10.00000

1 1.54640 1.54640 1.54381
2 -9.52188 -9.52188 -9.52327

3 -4.49206 -4.49206 -4.48494

!!!,r"!^!^i.^°"''^""°"f ^^'^"^^'^^"^ Language. User Guide/Reference Manual. Mitchell
and Gauthler Associates, Inc., Concord, MA, 1981. "

13

In this particular case, the analytical technique resulted in at least two orders
of magnitude improvement in integration step size.

GONa.DSIONS

The modular, piecewise analytical technique presented in this report can
result is considerable savings in analysis and associated computer time.

14

APPENDIX A

PROGRAM LISTING AND SAMPLE EXECUTION

15

PROGRAM LISTING

PROGRAM TFMAIN(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)
C MAIN PROGRAM TO DRIVE TRANSFER FUNCTION SUBROUTINE.
C FOR TEST PURPOSES ONLY.

COMMON/TRNSF/TAU1(50),TAU2(50),TAU3(50),TFTIME(50),TFAUX(50
+ TFAUX2 (50) ,KTFTYP(50) ,GAIN (50)
OPEN (8)
WRITE(8,11)

C READ INPUT DATA AND INITIALIZE.
CALL TRNF 10
WRITE (8,11)

C 200 DEFINE INTEGRATION TIME STEP DT.
DT = .005
DT2= DT/2.
WRITE(8,13) DT
DO 2 J=l,13
WRITE (8,12)

C 100 DEFINE INITIAL TIME T AND FINAL TIME TMAX.
T = 0.0
TMAX = 5.0
KMAX = IFIX(TMAX/DT)+1
DO 1 K=0,KMAX
T = DT*FLOAT(K)

C 300 DEFINE DRIVING TERM "DRIVE"
DRIVE = COS(2.*T) - l.O
CALL TRNF (DRIVE,XOUT,T,J)
IF(ABS(IFIX(T)-T).LT.DT2) WRITE(8,10) J,T,DRIVE,XOUT

1 CONTINUE
2 CONTINUE

STOP
10 FORMAT(1X,I5,3F20.5)
11 FORMAT('1')
12 FORMAT(//,' LTFID' ,16X, "TIME- ,14X, -DRIVE' ,19X, 'X')
13 FOR'IATC THE INTEGRATION TIME STEP DT = ',F9.6,' ' //)

^WD *

SUBROUTINE TRNF 10
C LTFTYP 1 -> GAIN/(TAU1*S+1)
C 2 -> GAIN*S/(TAU1*S+1)
C 3 _> GAIN/(S*(TAU1*S+1))
C 4 -> GAIN*(TAU2*S+1)/(TAU1*S+1)
C 5 -> GAIN/(TAU1*S**2 + TAU2*S +TAU3)
C LTFID ID NO. OF CHANNEL (VARIABLE).
C TUl FIRST TIME CONSTANT
C TU2 SECOND TIME CONSTANT (LTFTYP=4 OR 5)
C TU3 THIRD TIME CONSTANT (LTFTYP=5)

17

C XO INITIAL CONDITION ON VARIABLE
C DXO INITIAL CONDITION ON DERIVATIVE (LTFTYP=5)
C AA ALPHAMERIC LABEL FOR PRINTOUT

COMMON/TRNSF/TAUl(50) ,TAU2 (50) ,TAU3 (50) ,TFTIME(50) ,TFAUX (50) ,
+ TFAUX2(50),KTFTYP(50),GAIN(50)
CHARACTER AA*30,LABEL(5)*30
DATA LABEL/'GAIN/(TAU1*S+1) ',

+ 'GAIN*S/(TAU1*S+1) ',
+ 'GAIN/(S*(TAU1*S+1)) ',
+ 'GAIN*(TAU2*S+1)/(TAU1*S+1) ',
+ 'GAIN/(TAU1*S**2+TAU2*S+TAU3) '/
WRITE (8,1050)
DO 1 1=1,50
TAUl(I) = 0.
TAU2(I) = 0.
TAU3(I) = 0.
TFTIME(I) =0. ,
TFAUX(I) = 0.
TFAUX2(I) = 0.
KTFTYP(I) = 0
GAIN(I) =0.

1 CONTINUE
IFLAG = 0
DO 2 1=1,50
READ (5,1051,END=4) LTFID,LTFTYP,TUl,TU2,TU3,GA,XO,DX0,AA
IF (LTFTYP.LT.l .OR. LTFTYP.GT.5) THEN
WRITE(8,1052)LTFID,LTFTYP,TU1,TU2,TU3,GA,X0,DX0,AA
IFLAG = 1
WRITE(8,1004)
GO TO 2
ELSE
WRITE(8,10 52)LTFID,LTFTYP,TU1,TU2,TU3,GA,X0,DX0,AA,LABEL(LTFTYP)
END IF
IF (LTFID.LT.l .OR. LTFID.GT.50) THEN

IFLAG = 1
WRITE (8,1001)
GO TO 2
END IF

IF(TAUl(LTFID).NE.O..0R.TAU2(LTFID).NE.O..0R.TAU3(LTFID).NE.O.
+ .OR.KTFTYP (LTFID) .NE.O) THEN

IFLAG =1
WRITE(8,1002)
GO TO 2
END IF

IF(TU1.GT.0..AND.TU2.EQ.0..AND.TU3.GT.0..AND.LTFTYP.EQ.5)
+ GO TO 3
IF ((TUl.LE.O..OR.TU2.LE.0..OR.TU3.LE.0.).AND.LTFTYP.EQ.5)THEN

WRITE (8,1003)
IF (TUl.EQ.O. .AND. TU3.GT.0. .AND.TU2.GT.0.) THEN
WRITE(8,1005)
LTFTYP = 1

18

GA = GA/TU3
TU1=TU2/TU3
TU2=0.
TU3=0.
WRITE(8,1000)
WRITE(8,10 52)LTFID,LTFTYP,TU1,TU 2,TU3,GA,XO,DXO,AA

+ ,LABEL(LTFTYP)
GOTO 3

END IF
IF (TU3.EQ.0. .AND. TUl.GT.O. .AND.TU2.GT.0.) THEN
WRITE(8,1006)
LTFTYP = 3
GA = GA/TU2
TU1=TU1/TU2
TU2=0.
TU3=0.
WRITE(8,1000)
WRITE(8,1052)LTFID,LTFTYP,TU1,TU2,TU3,GA,X0,DXO,AA

+ ,LABEL(LTFTYP)
GOTO 3

END IF
IFLAG =1
GOTO 2

END IF
IF (TUl.LE.O. .AND. LTFTYP.LE.4) THEN

IFLAG =1
WRITE(8,1003)
GO TO 2

END IF
3 CONTINUE

IF (TU2.GT.0. .AND. LTFTYP.LE.3) THEN
TU2=0.
WRITE(8,1003)

END IF
IF (LTFTYP.EQ.4 .AND. TU2.EQ.0. .AND. TUl.GT.O.) THEN

LTFTYP = 1
WRITE '8,1003)
WRTT^(8,1005)

WRITE (8,1000)
WRITE(8,10 52)LTFID,LTFTYP,TU1,TU2,TU3,GA,X0,DX0,AA

+ ,LABEL(LTFTYP)
END IF

IF (TU1.EQ.TU2 .AND. LTFTYP.EQ.4) THEN
WRITE(8,1007)

END IF
IF (TU3.GT.0. .AND. LTFTYP.LT.5) THEN

TU3=0.0
WRITE(8,1003)

END IF
IF (GA.LE.O.) WRITE(8,1008)
TAUl(LTFID) = TUl

19

TU2
TU3
XO
DXO
= LTFTYP
= GA

STOP

1000
1001
1002

1003
1004
1005
1006

1007

1008
1050

FUNCTION WILL BE TREATED AS:'
10*** KTFID OUT OF RANGE.')
10*** THIS TRANSFER FUNCTION

FORMAT ('
+ 'KTFTYP
FORMAT ('

10***
10***

1ST
1ST

ORDER
ORDER

TAU OUT OF RANGE.')
KTFTYP OUT OF RANGE.')

LAG. KTFTYP -> 1.'
LAG WITH INTEGRATOR.

TRANSFER FUNCTION'

RANGE.)
KTFID'

,9X,'X'

TAU2(LTFID)
TAU3(LTFID)
TFAUX(LTFID) =
TFAUX2(LTFID)=
KTFTYP(LTFID)
GAIN(LTFID)

2 WRITE(8,1053)
4 WRITE(8,1053)

IF (IFLAG.NE.O)
RETURN
FORMAT(' ***THIS TRANSFER
FORMAT(' ***ERROR IN TRNF
FORMAT(' ***ERROR IN TRNF

+ ,'ALREADY DEFINED.')
FORMAT(' ***ERROR IN TRNF
FORMAT(' ***ERROR IN TRNF
FORMAT(' SUBSTITUTING

SUBSTITUTING
-> 3. ')
ERROR IN TRNF 10 TAUl = TAU2

+ ' DEGENRATES TO UNITY.')
FORMAT(' ***ERROR IN TRNF 10*** GAIN OUT OF
FORMAT(///,'ITRANSFER FUNCTIONS DEFINITIONS

+ ' KTFTYP',6X,'TAUl',6X,'TAU2',6X,'TAU3',6X,'GAIN'
+ 8X,'DX',//)

1051 FORMAT(212,5X,6F6.0,5X,A30)
1052 FORMAT(217,6F10.5,/,' DESCRIPTION:
1053 FORMAT(/)

END
SUBROUTINE TRNF(XIN,XOUT,T,KTFID)

C THIS ROUTINE EVALUATES THE FOLLOWING
C 1ST ORDER LAG;
C 1ST ORDER LAG WITH DIFFERENTIATION;
C 1ST ORDER LAG WITH INTEGRATION;
C COMBINED LEAD/LAG;
C 2ND ORDER LAG - HARMONIC OSCILLATOR.
C XIN DRIVING TERM.
C XOUT OUTPUT OF TRANSFER FUNCTION.
C T TIME.
C KTFTYP 1 -> 1/(TAU1*S+1)
C 2 -> S/(TAU1*S+1)
C 3 -> 1/(S*(TAU1*S+1))
C 4 -> (TAU2*S+1)/(TAU1*S+1)
C 5 -> 1/(TAU1*S**2 + TAU2*S +TAU3)
C KTFID ID NO. OF CHANNEL (VARIABLE).

COMMON/TRNSF/TAUl(50) ,TAU2 (50) ,TAU3(50) ,TFTIME(50) ,TFAUX (50)
+ TFAUX2 (50) ,KTFTYP(50) ,GAIN(50)
REAL KK,II
IF (KTFID.LT.l .OR.KTFID.GT.50) GOTO 102
KTF = KTFTYP(KTFID)
IF (KTF.LT.l .OR. KTF.GT.5) GOTO 103

,A30,2X,A30)

TRANSFER FUNCTIONS

20

XOUT =0.
XTMP =0.
XTMP2 = 0.

IF (TFTIME(KTFID).GT.T) GOTO 101
TDELTA = T - TFTIME(KTFID)
IF (TDELTA.EQ.0.) THEN

TFEXP = 1.
TFEXOT = l./TAUl (KTFID)
GOTO 1

END IF
TFEXP = EXP(-TDELTA/TAU1(KTFID))
FOLLOWING CODE ASSURES CORRECT LIMITING VALUES AS TAU -> 0.
IF (ABS(TAUl(KTFID)/TDELTA) .LT. l.E-4) THEN

TFEXOT = 1.0/TDELTA
ELSE

TFEXOT = TFEXP/TAUl(KTFID)
END IF

L DRIVE = XIN
OMEGA = DRIVE
KTF = KTFTYP(KTFID)
IF (KTF.EQ.4) OMEGA=(1.-TAU2(KTFID)/TAUl(KTFID))*

+ DRIVE
IF(KTF.EQ.l .OR. KTF.EQ.4) XTMP =

+ TFAUX(KTFID)*TFEXP+(1.-TFEXP)*OMEGA
IF (KTF.EQ.l) XOUT = XTMP
IF (KTF.EQ.2) THEN

XTMP = TFEXOT*(DRIVE-TFAUX2(KTFID))+TFAUX (KTFID)*TFEXP
XOUT = XTMP
XTMP2= DRIVE

END IF
IF(KTF.EQ.3) THEN

TEMP = TFAUX2(KTFID)-DRIVE
XTMP=TFAUX(KTFID)+TAU1(KTFID)*TEMP*(1.-TFEXP)+DRIVE*TDELTA
XOUT = XTMP
XTMP2 = TEMP*TFEXP+DRIVE

END IF
IF (KTF.EQ.4) XOUT = DRIVE*(TAU2(KTFID)/TAUl (KTFID))

+ + XTMP
"^^ (KTF.EQ.5) THEN

KK = TAU3 (KTFID)
II = TAUl(KTFID)
BETA = TAU2(KTFID)
FORCE = DRIVE
DELZ = TFAUX(KTFID)
DELDZ = TFAUX2(KTFID)
TLAST = TFTIME(KTFID)
CALL SOLAG(II,BETA,KK,DELZ,DELDZ,FORCE,T,TLAST,DELT,DELTD)
XTMP = DELT
XTMP2 = DELTD
XOUT = XTMP

END IF

21

100 TFTIME(KTFID) = T
TFAUX(KTFID) = XTMP
TFAUX2(KTFID) = XTMP2
XOUT = XOUT*GAIN(KTFID)

C ABOVE SAVES XD FOR 2ND ORDER LAG/OSCILLATOR AND DX/DT FOR
C FIRST ORDER LAG WITH DIFFERENTIATOR. FOR USE AS INITIAL
C CONDITIONS ON NEXT INTEGRATION STEP.

RETURN
101 WRITE(8,200) T,TFTIME(KTFID),KTFID

STOP
102 WRITE(8,201) KTFID

STOP
103 WRITE(8,202) KTF

STOP
200 FORMATC ***ERROR*** IN TRNF. TIME=' ,F10.5, ' IS GREATER THAN ',

+ 'LAST TIME=' ,F10.5, ' FOR CHANNEL' ,I 3,//)
201 FORMATC ***ERROR*** IN TRNF. CHANNEL NO. KTFID=',I4,

+ ' IS OUT OF RANGE.'//)
202 FORMATC ***ERROR*** IN TRNF. TYPE CODE NUMBER KTFID=',I4,

+ ' IS OUT OF RANGE.'//)
END
SUBROUTINE SOLAG(II,BETA,KK,DELZ,DELDZ,FORCE,T,TLAST,DELT,

+ DELTD)
C DIFFERENTIAL EQUATION
C II*YDDOT + BETA*YDOT + KK*Y = FORCE
C NOTE: THE CALLING ROUTINE MUST SAVE TLAST,DELZ AND DELDZ
C FOR THE NEXT CALL TO SOLAG

REAL NUM ,LAMB1, LAMB2, LAMB, II, KK
IF (BETA.LT.O. .OR. KK.LE.0.) THEN

WRITE(8,1000) BETA,KK
STOP

END IF
IF (II.LT.O.) THEN

WRITE (8,1001) II
STOP

END IF
B0V2I = BETA/(2.*II)
RDCND = BOV2I**2 -KK/II
FOVK = FORCE/KK
IF(RDCND .GT. 0.)GO TO 100
IF(RDCND .EQ. 0.)GO TO 120

C OSCILLATORY SOLUTION
LAMB =-B0V2I
OMEGA = SQRT (-RDCND)
NUM = OMEGA*(DELZ-FOVK)
DENOM = DELDZ-LAMB*(DELZ-FOVK)
LAMB = -B0V2I
IF(NUM .EQ. 0. .AND. DENOM .EQ. 0.) GO TO 20
PHI = ATAN2(NUM,DENOM) - OMEGA*TLAST
GO TO 30

20 CONTINUE

22

PHI = 0.
30 CONTINUE

ETEMP = EXP(-LAMB*TLAST)
IF(DELZ - FOVK .EQ. 0.)GO TO 40
A=(DELZ - FOVK)*ETEMP/SIN(OMEGA*TLAST+PHI)
GO TO 50

40 CONTINUE
A=DELDZ*ETEMP/(LAMB*SIN(OMEGA*TLAST + PHI)

1 +OMEGA*COS(OMEGA*TLAST + PHI))
50 CONTINUE

FTEMP = EXP(LAMB*T)
DELT= A*FTEMP*SIN(OMEGA*T + PHI) + FOVK
DELTD = LAMB*A*FTEMP*SIN(OMEGA*T+PHI) +

1 OMEGA*A*FTEMP*COS(OMEGA*T+PHI)
GO TO 150

100 CONTINUE
: EXPONENTIAL SOLUTION

LAMBl = -B0V2I+SQRT(RDCND)
LAMB2 = -B0V2I-SQRT(RDCND)
A = (DELZ - DELDZ/LAMB2 - FOVK)*EXP(-LAMB1*TLAST)/

1 (1. - LAMB1/LAMB2)
B = (DELZ - DELDZ/LAMBl - FOVK)*EXP(-LAMB2*TLAST)/

1 (1. - LAMB2/LAMB1)
DELT = A*EXP(LAMB1*T) + B*EXP(LAMB2*T) + FOVK
DELTD = LAMB1*A*EXP(LAMB1*T)+LAMB2*B*EXP(LAMB2*T)
GO TO 150

120 CONTINUE
: CRITICALLY DAMPED SOLUTION

LAMB = -B0V2I
A=((DELZ-FOVK)*(1+TLAST*LAMB)-TLAST*DELDZ)*EXP(-LAMB*TLAST)
B=(DELDZ+LAMB*(FOVK-DELZ))*EXP(-LAMB*TLAST)
DELT = (A+B*T)*EXP(LAMB*T)+FOVK
DELTD = (LAMB*A+B+LAMB*B*T)*EXP(LAMB*T)

150 CONTINUE
TLAST = T
DELZ = DELT
DELDZ = DELTD
P-^TURN

1000 _ORMAT(/,' ***-ERR IN SOLAG-*** BETA=',E12.4,',KK=',E12.4,/,
+ ' ONLY POSITIVE DEFINITE VALUES ALLOWED.',/)

lOCi FORMAT(/,' ***-ERR IN SOLAG-*** II=',E12.4,/
+ ' NEGATIVE VALUES NOT ALLOWED.',/)
END

23

SAMPLE DATA INPUT CARDS.

K K T T T G X D
T T A A A A X
F F U U U I
I T 1 2 3 N
D Y • • •
. P • • •
• • • • •

0101 .02 0. 0. 4.0 0.0 0
0202 .2 0. 0. 2.0 0.0 0
0303 .02 0. 0. 2.0 0.0 0
0404 .02 .01 0.0 1.0 0.0 0
0504 .02 0. 0.0 1.0 0.0 0
0605 1. 3. .25 1.0 10.0 0
0705 1. 1. .25 1.0 10.0 0
0805 1. .5 .25 1.0 10.0 0
0905 1. .0 .25 1.0 10.0 0
1005 0. .5 .25 1.0 10.0 0
1105 1. .5 .0 1.0 10.0 0
1205 .001 .0002 20. 1.0 10.0 0
1305 .0002 0.0 5000. 1.0 10.0 0

A

PITCH ATTITUr . HOLD
PITCH SYNTHETIC DAMPING
YAW ATTITUDE HOLD
YAW LOS RATE FILTER
YAW LOS RATE FILTER
PURE DAMPING
CRITICALLY DAMPED
DAMPED OSCILLATION
PURE OSCILLATION

24

SAMPLE OUTPUT

TRANSFER FUNCTIONS DEFINITIONS:

KTFID KTFTYP TAUl TAU2 TAU3 GAIN X

1 1 .02000 .00000 .00000 4.00000 .00000
DESCRIPTION: PITCH ATTITUDE HOLD GAIN/(TAU1*S+1)

DX

00000

2 2 .20000 .00000 .00000 2.00000 .00000 .00000
DESCRIPTION: PITCH SYNTHETIC DAMPING GAIN*S/(TAU1*S+1)

3 3 .02000 .00000 .00000 2.00000 .00000 .00000
DESCRIPTION: YAW ATTITUDE HOLD GAIN/(S*(TAU1*S+1))

4 4 .02000 .01000 .00000 1.00000 .00000 .00000
DESCRIPTION: YAW LOS RATE FILTER GAIN*(TAU2*S+1)/(TAUl*S+1)

5 4 .02000 .00000 .00000 1.00000 .00000 .00000
DESCRIPTION: YAW LOS RATE FILTER GAIN *(TAU2*S + 1)/(TAU1*S + 1)
ERROR IN TRNF 10 TAU OUT OF RANGE.

SUBSTITUTING 1ST ORDER LAG. KTFTYP -> 1.
***THIS TRANSFER FUNCTION WILL BE TREATED AS:

5 1 .02000 .00000 .00000 1.00000 .00000 .00000
DESCRIPTION: YAW LOS RATE FILTER GAIN/(TAU1*S+1)

6 5 1.00000 3.00000 .25000 1.00000 10.00000 .00000
DESCRIPTION: PURE DAMPING GAIN/(TAU1*S**2+TAU2*S+TAU3)

7 5 1.00000 1.00000 .25000 1.00000 10.00000 .00000
DESCRIPTION: CRITICALLY DAMPED GAIN/(TAU1*S**2+TAU2*S+TAU3)

8 5 1.00000 .50000 .25000 1.00000 10.00000 .00000
DESCRIPTION: DAMPED OSCILLATION GAIN/(TAU1*S**2+TAU2*S+TAU3)

9 5 1.00000 .00000 .25000 1.00000 10.00000 .00000
DESCRIPTION: PURE OSCILLATION GAIN/(TAU1*S**2+TAU2*S+TAU3)

25

10 5 .00000 .50000 .25000
DESCRIPTION:
ERROR IN TRNF 10 TAU OUT OF RANGE.

SUBSTITUTING 1ST ORDER LAG. KTFTYP -> 1.
***THIS TRANSFER FUNCTION WILL BE TREATED AS:

10 1 2.00000 .00000 .00000 4.00000 10.00000
DESCRIPTION: GAIN/(TAUl*S+l)

1.00000 10.00000 .00000
GAIN/(TAU1*S**2+TAU2*S+TAU3)

.00000

11 5 1.00000 .50000 .00000
DESCRIPTION:
ERROR IN TRNF 10 TAU OUT OF RANGE.

SUBSTITUTING 1ST ORDER LAG WITH INTEGRATOR. KTFTYP -> 3.
***THIS TRANSFER FUNCTION WILL BE TREATED AS:

11 3 2.00000 .00000 .00000 2.00000 lO.OGOOO
DESCRIPTION: GAIN/(S*(TAU1*S+1))

1.00000 10.00000 .00000
GAIN/(TAU1*S**2+TAU2*S+TAU3)

.00000

12 5
DESCRIPTION:

.00100 00020 20.00000 1.00000 10.00000 .00000
GAIN/(TAU1*S**2+TAU2*S+TAU3)

13 5
DESCRIPTION:

.00020 ,000005000.00000 1.00000 10.00000 .00000
GAIN/{TAU1*S**2+TAU2*S+TAU3)

26

THE INTEGRATION TIME STEP DT = .005000

LTFID • TIME DRIVE X
1 .00000 .00000 .00000
1 1.00000 -1.41615 -5.53438
1 2.00000 -1.65364 -6.71729
1 3.00000 -.03983 -.20403
1 4.00000 -1.14550 -4.44207
1 5.00000 -1.83907 -7.42804

LTFID ^ TIME DRIVE X
2 .00000 .00000 .00000
2 1.00000 -1.41615 -3.67251
2 2.00000 -1.65364 1.68669
2 3.00000 -.03983 2.25946
2 4.00000 -1.14550 -3.56729
2 5.00000 -1.83907 .70957

LTFID TIME DRIVE X
3 .00000 .00000 .00000
3 1.00000 -1.41615 -1.04245
3 2.00000 -1.65364 -4.69789
3 3.00000 -.03983 -6.27757
3 4.00000 -1.14550 -6.97196
3 5.00000 -1.83907 -10.47893

LTFID TIME DRIVE X
4 .00000 .00000 .00000
4 1.00000 -1.41615 -1.39987
4 2.00000 -1.65364 -1.66648
4 3.00000 -.03983 -.04542
4 4.00000 -1.14550 -1.12801
4 5.00000 -1.83907 -1.84804

LTFID TIME DRIVE X
5 .00000 .00000 .00000
5 1.00000 -1.41615 -1.38360
5 2.00000 -1.65364 -1.67932
5 3.00000 -.03983 -.05101
5 4.00000 -1.14550 -1.11052
5 5.00000 -1.83907 -1.85701

27

LTFID
6
6
6
6
6
6

TIME
.00000

1.00000
2.00000
3.00000
4.00000
5.00000

DRIVE
.00000
41615
65364
03983
14550
83907

X
10.00000
9.35272
8.09988
7.04001
6.35853
5.38481

LTFID
7
7
7
7
7
7

TIME
,00000
,00000
,00000
00000
,00000
,00000

DRIVE
.00000
.41615
.65364
.03983
.14550
.83907

X
10.00000
8.97774
6.33926
3.54^J9
1.7b784
.10284

LTFID
8
8
8
8
8
8

TIME
00000
00000
00000
00000
,00000
,00000

-1
-1

-1

DRIVE
.00000
.41615
.65364
.03983
.14550

10
8
5
1

-1

X
00000
,82387
,36682
,15018
,86486

-1.83:^07 -4.23518

LTFID
9
9
9
9
9
9

TIME
.00000

1.00000
2.00000
3.00000
4.00000
5.00000

DRIVE
.00000
.41615
.65364
.03983
.14550
.83907

10
8
3

-3
-9

■15

X
00000
62980
87712
25255
90176
20981

LTFID
10
10
10
10
10
10

TIME
00000
,00000
00000
00000
00000

5.00000

DRIVE
.00000

1.41615
65364
03983
14550
83907

-1

-1
-1

40.00000
23.29664
11.23015
5.73197
2.81734

-1.12071

LTFID
11
11
11
11
11

TIME
.00000

1.00000
2.00000
3.00000
4.00000

-1
-1

-1

DRIVE
.00000
.41615
.65364
.03983
.14550

20
19
18
16
15

X
00000
86679
71997
91363
57969

28

11 5.00000 -1.83907 13.85090

LTFID
12
12
12
12
12
12

TIME
.00000

1.00000
2.00000
3.00000
4.00000
5.00000

DRIVE
.00000

-1.41615
-1.65364
-.03983
-1.14550
-1.83907

10.00000
-9.10857
8.06504

-7.32883
6.51484

-5.97223

LTFID
13
13
13
13
13
13

TIME
.00000

1.00000
2.00000
3.00000
4.00000
5.00000

DRIVE
.00000

-1.41615
-1.65364
-.03983
-1.14550
-1.83907

X
10.00000
1.54640

-9.52188
-4.49206
8.13177
7.00721

29

APPENDIX B

PROGRAM USAGE

31

The program consists of three subroutines (TRNF 10, TRNF, and SOLAG) and a
main program, TFMAIN.* TRNF 10 is the initialization routine. The data records
that define the transfer functions are read by this routine. (See the explana-
tion for input data format given below.) TRNF performs the analytical transfer
function simulations. It accesses subroutine SOLAG for treatment of the second
order lag/harmonic oscillator. The driving main program TFMAIN is supplied for
demonstration and testing only. Use it as a model for interfacing TRNF 10, TRNF,
and SOLAG with your computer program. The initial time is at line 100 and the
integration time step is at line 200. The driving term is defined in the lines
following 300.

The call to TRNF contains four arguments:

DRIVE Driving function

XOUT Output of the transfer function channel

T Time

J Channel I.D. number LTFID

One input data record is required for each transfer function variable to be
integrated. These records have the following form:

Column Format Variable Definition

^ 12 LTFID I.D number of channel; values are from
1 to 50

12 LTFTYP

10 F9.0 TAUl

19 F9.0 TAU2

28 F9.0 TAU3

37 F9.0 XO

46 F9.0 DXO

Code for type of transfer function;
values are 1 to 5

First constant, for all LTFTYP

Second constant, for LTFTYP = 4 or 5

Third constant, for LTFTYP=5

Initial condition for variable

Initial condition for derivative
of variable

55 A26 AA Alphanumeric label

LTFID is an integer variable from 1 to 50 that is associated with each
transfer function channel (output variable) to be simulated. For example, a lag

* A listing of a program implementing these techniques and a sample run are in
appendix A.

33

might be applied to both a fin yaw deflection command and to a fin pitch deflec-
tion command. Each of these two channels is defined as a separate data input
record and is assigned an identifying integer LTFID. If the user chooses an
integer that was previously assigned on another input data record, execution
terminates with an explanatory message.

LTFTYP is an integer variable in the range 1 to 5 that defines the type of
transfer function:

LTFTYP Description and FORTRAN code

1 First-order lag
1/(TAU1*S + 1)

2 First-order lag with differentiator
S/(TAU1*S + 1)

3 First-order lag with integrator
1/[S*(TAU1*S + 1)]

4 Combined lead/lag
(TAU2*S + 1)/(TAU1*S +1)

Second-order lag/harmonic osc
1/(TAU1*S'' + TAU2*S -t TAU3)

illator

TAUl is the first constant (see LTFTYP above). All five transfer function
types (LTFTYP = 1 to 5) require this quantity to be positive.

TAU2 is the second constant. Lead/lag and second-order lag/oscillator
transfer functions (LTFTYP = 4,5) require a positive value.

TAU3 is the third constant. The second-order lag/oscillator (LTFTYP = 5)
requires a positive value.

XO is the initial condition on the output variable, i.e., y = y at t = t .

DXO is the initial condition on the derivative of the output variable v' =
dy/dt at t = t . ' -^

AA is an alphanumeric label of 26 characters that identifies the nature of
the transfer function when an echo of the input data is printed out by TRNF 10.
Examples might be "PITCH SYNTHETIC DAMPING" or "YAW ATTITUDE HOLD."

If an input variable is out of range, the program prints an error message
and reformulates the transfer function into an equivalent form. For example, if
an attempt is made to run an oscillator (LTFTYP = 5) with TAUl = 0, subroutine
TRNF 10 will substitute the equivalent simple lag (LTFTYP = 1), as can be seen in
the sample output for KTFID =10. Two other examples appear in the sample output
in the sample execution, i.e., for KTFID = 5 and KTFID = 11.

34

SYMBOLS

35

Algebraic Expressions

A Constant of integration

B Constant of integration

D

K

(0

Coefficient of the Laplace operator s in the transfer function of
the second-order lag/oscillator

Coefficient of the square of the Laplace operator s in the transfer
function of the second-order lag/oscillator

Constant term in the transfer function of the second-order
lag/oscillator

L Damping coefficient -D/2I for the second-order lag/oscillator

s Laplace transform operator

t Time, independent variable

T Time constant

D Driving term

y Output of transfer function, dependent variable

YQ Initial condition on y at t = t

y' Initial condition on dy/dt at t = t

z Auxiliary dependent variable for first-order lag with differentia-
tion or for first-order lag with integration

Frequency of oscillation for second-order lag/oscillator

Phase angle of oscillation for second-order lag/oscillator

37

FORTRAN Variable Names

AA

DX

KTFID

KTFTYP

T

TAUl

TAU2

TAU3

X

XIN

XOUT

Alphanumeric label for printout (80 characters)

Initial condition on derivative when KTFTYP=5

I.D. number of channel or variable (range is 1 to 50)

Integer variable used to indicate type of transfer function (range
1 to 50) *

KTFTYP = 1 is first-order lag
Transfer function: GAIN/(TAU1*S+1)

KTFTYP = 2 is first-order lag with differentiation
Transfer function: GAIN*S/(TAU1*S+1)

KTFTYP = 3 is first-order lag with integration
Transfer function: GAIN/[S*(TAU1*S+1)]

KTFTYP = 4 is combined lead/lag
Transfer function: GAlN-*-(TAU2*S+l/(TAUl*S+l)

KTFTYP = 5 is second-ordtr lag/harmonic oscillator
Transfer function: GAIN/(TAU1*S**2 + TAU2*S +TAU3)

Time

First time constant

Second time constant (Tj for KTFTYP=4 or D for KTFTYP)

Third time constant (K for KTFTYP=5)

Initial condition on variable

Driving term

Output of transfer function

38

DISTRIBUTION LIST

Department of the Army
ATTN: DAMA-CSM

DAMO-RQS
Washington, DC 20314

Commander
U.S. Army Materiel Command
ATTN: AMCDE-DM
5001 Eisenhower Avenue
Alexandria, VA 22304

Commander
Armament Research and Development Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: SMCAR-TSS (5)

SMCAR-LC, COL A. T. Crumpton
T. Davidson

SMCAR-LCS, J. Gregorits
SMCAR-LCA, L. Ambrosini

L. Marino
F. Scerbo

SMCAR-LCA-F, A. Loeb
D. Mertz (10)
R. Kline (3)
E. Friedman (3)
M. Amorusc (3)

SMCAR-LCU, B. Bushey
Dover, NJ 07801-5001

Commander

U.S. Army Armament, Munitions and Chemical Command
ATTN: AMSMC-GCL(D)
Dover, NJ 07801-5001

Administrator
Defense Technical Information Center
ATTNr Accessions Division (12)
Carat.fon Station
Alexandria, VA 22304-6145

Director
U.S. Army Materiel Systems Analysis Activity
ATTN: AMXSY-MP

Aberdeen Proving Ground, MD 21005-5066

39

Commander

Chemical Research and Development Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: SMCCR-SPS-IL
Aberdeen Proving Ground, MD 21010-5423

Commander
Chemical Research and Development Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: SMCCR-RSP-A
Aberdeen Proving Ground, MD 21010-5423

Director
Ballistic Research Laboratory
ATTN: AMXBR-OD-ST (2)

AMXBR-BLL, R. Lieske
W. Mermagen
C. Murphy
V. Oskay

Aberdeen Proving Ground, MD 21005-5066

Chief
Benet Weapons Laboratory, LCWSL
Armament Research and Development Center
U.S. Army Armament, Munitions and Chemical Command
ATTN: SMCAR-LCB-TL
Watervliet, NY 12189-5000

Commander
U.S. Army Armament, Munitions and Chemical Command
ATTN: AMSMC-LEP-L

AMSMC-PDM
AMSMC-ASI

Rock Island, IL 61299-6000

Director
U.S. Army TRADOC Systems Analysis Activity
ATTN: ATAA-SL
White Sands Missile Range, NM 88002

Headquarters
Air Force Weapons Laboratory (WLX)
Kirtland Air Force Base, NM 87117

Headquarters
U.S. Army Training and Doctrine Command
ATTN: ATCD-MC

ATAA-SL
Ft. Monroe, VA 23651

40

Director

Marine Corps Development and Engineering Command
ATTN: Code DO92
Quantico, VA 22134

Headquarters
Eglin Air Force Base
ATTN: Technical Library
Eglin Air Force Base, FL 32542

Commander
U.S. Army Test and Evaluation Command
ATTN: DRSTE-CT-T
Aberdeen Proving Ground, MD 21005

Commander
U.S. Naval Weapons Center
ATTN: Technical Library (Code 5557)
China Lake, CA 93555

Commander
U.S. Naval Surface Weapons Center
White Oak. Laboratory
ATTN: Research Library
Silver Spring, MD 20910

Commander
U.S. Naval Surface Weapons Center
Dahlgren Laboratory
ATTN: Technical Library
Dahlgren, VA 22448

Commander/Director
Naval Ship Research and Development Center
ATTN: Technical Library
Washington, DC 20007

Commanding General
U.S. (*.iny Missile Command
ATTN Technical Library, R. Deep
Redstone Arsenal, AL 35809

41

